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Abstract 

We discuss the effectiveness of branch and cut for solving large instances 
of the independent set problem. Typical LP formulations, even strengthened 
by clique inequalities, yield poor bounds for this problem. We prove that a 
strong bound is obtained by the use of the so called “rank inequalities”, which 
generalize the clique inequalities. For some problems the clique inequalities 
imply the rank inequalities, and then a strong bound is guaranteed already by 
the simpler formulation. This is the case of the contact map overlap problem, 
which was proposed as a measure for protein structure alignments. We formalize 
this problem as a particular, large independent set problem which we solve 
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by integer programming. We strengthen our formulation by the use of clique 
inequality cuts. Although there are exponentially many cliques, we show how to 
separate over them in polynomial time. Unprecedented computational results 
on real data show the effectiveness of our approach. 
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1 Introduction 

The Maximum Independent Set (MIS) is one of the classic problems in combinatorial 
optimization. Both the cardinaZity version and the weighted version of MIS have been 
studied. The literature on this problem -or its twin, the MUZ%WJ~ Clique- is vaste 
and dates back to the beginning of the field. Although its definition is nice and simple, 
this problem is one of the toughest to solve exactly. Many papers over the years have 
dealt with the exact solution of the maximum clique/independent set [20, 3, 6, 161. 
The state of the art for this problem is that we cannot practically solve instances on 
dense graphs of more than a couple hundred nodes [16]. The most successful approach 
to the exact solution of combinatorial optimization problems is probably Integer Lin- 
ear Programming, which has been applied profitably in very many cases [19, 7, 171. 
The Integer Programming approach consists in formulating a problem as the maxi- 
mization of a linear function of some integer variables and then solving it via branch 
and bound, where the upper bound comes from the linear programming relaxation. 
The LP relaxation is the same question, only that the variables are not restricted to 
be integer, which makes it polynomially solvable. A formulation is as successful as 
the strength of its LP bound. That is, if we can prove that the value of the objective 
function over the relaxation is close to the value over the integers, then the bound, 
and hence the pruning of the search space, will be effective. It is often the case that in 
order to obtain better bounds, the formulation is reinforced by the use of additional 
constraints, called cuts, and the resulting approach is known as branch and cut. Cuts 
are constraints that do not eliminate any feasible integer solution, but make the space 
of fractional solutions smaller, this way decreasing the value of the LP bound. 

The maximum independent set has a natural, nice formulation as an integer pro- 
gramming problem. Unfortunately, this formulation gives a terribly bad bound, e.g. 
the bound can be as big as n/2 for an instance with optimal value of 1. The formula- 
tion can be strengthened by the use of clique-inequalities cuts. These are constraints 
that say that each clique can have at most one node in common with any independent 
set. By using some concepts from Ramsey Theory, we will show that even with clique 
inequalities the gap between the LP value and the optimum can be very bad. In this 
paper we pinpoint the fundamental constraints for the Maximum Independent Set as 
the “rank inequalities”. Their addition guarantees an O(log n) gap between the LP 
bound and the optimum. This does not contradict the known complexity results for 
MIS (stated in Section 2) since, in general, it is NP-complete to find all violated rank 
inequalities. However, the theory we develop here can be also useful in practice, since 
there are some fortunate cases in which a formulation implies the rank inequalities and 
hence we know that the bound will be strong. This is the case for a particular problem 
studied in this paper, namely the maximum contact map overlap (CMO) problem. 

A contact map is an undirected graph giving a concise representation of the 3D 
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fold of a protein. Each residue of a protein is a node, and there is an edge (called 
a contact) between two nodes if their euclidean distance is within a given threshold 
when the protein is folded. The contact map overlap problem tries to capture the 
similarity in the 3D folds of two proteins by comparing their contact maps. In this 
sense, it is a new way of aligning 3D structures. The value of an alignment of the 
residues of one protein vs. the other, is taken as the number of contacts in the first 
contact map whose endpoints are aligned with residues that also share a contact in 
the second contact map. The CMO, introduced in [9] and proved NP-hard in [12], is 
emerging as the most important practical measure of protein structure similarity. 

The CM0 problem can be reduced to a very large MIS problem on a suitable 
graph. In this paper we formulate the CM0 problem as an Integer Program and use 
clique-inequalities and some other cuts to strengthen the bound. Although we show 
that there is an exponential number of different clique inequalities, we characterize 
them completely and show how to separate over them in fast polynomial time. That 
is, given a fractional solution, we can find in time O(n2) the most violated clique 
inequality and add it to the LP formulation. Finding cliques in a graph is in general 
a difficult problem. However, in our case we can solve it effectively since we will show 
that the underlying graph is perfect. For this type of graphs, the clique inequalities 
imply the rank inequalities, which gives a theoretical explanation of the practical good 
performance of our algorithm. We have implemented our ideas in a computer program, 
which has been run on some real data coming from the PDB protein data base. This 
is the first time that exact solutions have been found for real instances of this problem. 
We have been able to align optimally several pairs of proteins with contact maps of 
50 to 100 residues/contacts. These values are typical of small and moderate-sized 
proteins, of which there is in abundance in PDB. 

2 The Maximum Independent Set Problem 

Given an undirected graph G = (V, E), [VI = n, a subset V’ C V of nodes is an 
independent or stable set if no two nodes in V’ are joined by an edge. The Maximum 
Independent Set problem consists in determining an independent set of maximal weight 
or cardinality. Given a weight function c on the vertices (c := 1 in the cardinality 
version), the standard LP formulation associates a binary variable x, to each node 
21 E v: 

max C&xv ~x,+x~~lV{u,v}EE, x,E{O,~}VUEV 
1 1. 

. (1) 
VEV 

The LP relaxation of the cardinality version of (1) has the optimal value [n/21, 
achieved when xv = l/2 for all 21 E V. This bound can be O(n) times larger than the 
true optimum: e.g. if G is a clique, the optimum is 1. Since any clique Q c V can have 
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at most one node in common with any independent set, the following clique-inequality 
constraints can be added to (1): 

c xv 5 1 VQ clique in G (2) 
VEQ 

Adding contstraints (2) presents two types of difficulites. First, findig cliques in a 
graph is itself a hard problem. Second, there may be exponentially many different 
cliques. We can overcome these difficulties if we have a separation oracle: that is a 
black box that, given a solution to an LP with only some of the inequalities (2), tells us 
if the solution is in fact feasible for all the inequalities (2), or else returns us a violated 
clique inequality. In the next section we will argue that even in this case we are not 
guaranteed that the LP relaxation of (1) and (2) will in fact be a good approximation 
of the optimum. 

The complexity theory results for the MIS paint a bleak picture as far as our ability 
to approximate this problem. Since the maximum independent set in a graph is the 
maximum clique in the complement graph, the complexity results are the same as those 
for the maximum clique problem. If P # NP, then MIS cannot be approximated to 
within a factor of O(n’), where E is a fixed positive constant defined for MIS, [lo, 2: l]. 
Under stronger complexity assumptions, MIS cannot be approximated to within a 
factor of O(n0*5-’ ), [13]. The best approximation factor for MIS found so far is a mere 
O(a) for the cardinality version, [5]. 

2.1 Ramsey Theory and the Integrality Gap 

We just saw that one cannot expect to ever be able to find a reasonable approxima- 
tion for MIS. A tacit polyhedral combinatorics axiom is that if there is a reasonable 
approximation for MIS, there should be an LP relaxation for MIS which is solvable 
in polynomial time and has a reasonable size integrality gap. Such an LP relaxation 
would not allow any of the clique inequalities to be violated by too large a factor. Call 
the LP relaxation that consists of the clique inequalities for all of the maximal cliques 
the clique relaxation. In order for this relaxation to be polynomially solvable, we need 
an efficient separation algorithm for these exponentially many clique inequalities. Let 
x* be our current fractional solution. With the vertices of G weighted by x*, this 
separation algorithm must be able to find a clique of weight more than 1 if such a 
clique exists. Hence, our separation algorithm must be powerful enough to solve the 
maximum weighted clique problem. However, maximum weighted clique is as difficult 
to approximate as MIS. 

Suppose we eliminated this obstacle to a small integrality gap by imagining we 
have a separation oracle that finds a clique of weight more than 1 if such a clique 
exists. What can we say then about the integrality gap? We argue here that the 
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results from a branch of graph theory called Ramsey theory make it unlikely that the 
gap is a constant even in this case. 

Ramsey theory in part studies the occurrence of large cliques and large independent 
sets in arbitrary graphs. An idea in Ramsey theory is that if a graph is large enough 
and has no large cliques (independent sets), then it must have large independent sets 
(cliques). More formally, there is a smallest integer R( Ic, 1) such that every graph with 
at least R(lc, Z) vertices has either a clique of k vertices or an independent set of I 
vertices. This number is called the (k, I)-th Ramsey number. 

Ramsey numbers are notoriously difficult to compute, and seem to grow reasonably 
quickly. We are particularly interested in their growth when the clique number k = 3, 
and conjecture the following. 

Conjecture 1 

(3) 
An integrality gap result follows as a corollary to this conjecture. 

Corollary 1 If conjecture 1 holds, there is no constant integrality gap between MIS 
and the clique LP relaxation. 

Proof Let r E N be given. We now produce a graph where the integrality gap exceeds 
r/2. Choose 1, E N such that w > r. Choose a graph G, having R(3, &) - 1 
vertices that has no clique of size 3 and no independent set of size 1,. An optimal 
solution to the clique LP relaxation is XT = l/2 for all i E V,. The cost of this solution 
is F. The MIS solution has cost I,. - 1. Hence, this integrality gap exceeds r/2, 
as required. 0 

Ramsey theory thus shows that inequalities other than the clique inequalities are 
needed in an LP relaxation for there to be a constant integrality gap. The analysis 
above suggests which additional inequalities are needed: For each H c V, we have 
the valid inequality 

x(H) I r(H), (4 

where the rank function r(H) is the maximum size of any independent set contained in 
H. These inequalities are called the rank inequalities of MIS. We call the LP relaxation 
consisting precisely of all of the rank inequalities the rank LP relaxation. 

Theorem 1 The integrality gap between weighted MIS and its rank LP relaxation is 
at most logn + 1. 

Proof Denote a maximizer for the rank LP relaxation by x’. We will demonstrate that 
& is less than or equal to a convex combination of incidence vectors of independent 
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sets of G. From an averaging argument, one of these independent sets costs more than 
d from which our integrality gap result follows. log n+l ’ 

We first find the smallest integer k so that for every vertex ~1 E V, xz = 9, 
where 1, E N. We will decompose x* into a linear combination of incidence vectors of 
independent sets with linear multipliers i. We start by having x* = y” + z”, where 
y” := x* and z o := 0. We successively form yi, zi for i = 1,2,. . . by taking,; times an 
incidence vector of an independent set away from yi-’ and adding it to ,F1~ Hence, 
yi+zi = x* for i = 1,2,. . . . We terminate our process at an integer last when yzast = 0 
and zlast = x*. We thus have zlast expressed as a linear combination of independent 
sets. Define 

E := {v E V : yi-’ > 0) for i = 1,2,. . . . 

Consider a maximum cardinality indepent set xi for G[V$]. Define 

Ii i yi := yzbl - ;x , z := ziel + ixi for i = 1,2,. . . . 

Because x* satisfies the rank inequalities for the vertex sets vi, we have that 

X*(Vi)<X’(I$)fori=1,2,.... 

We can now determine a lower bound on how much yi decreases in each iteration, and 
thus an upper bound on how many terms are in our linear decomposition of x* into 
independent sets. We have 

y"(V) = y"-'(V) - 'xi(V) < y”-‘(V) - ix*(v) 
5 y”-‘(V) - iy”-l(V) = (1 - i)yi-‘(V). 

We determine inductively that 

Hence, we have 

y”(V) 5 (1 - $iyO(V) = (1 - i)x*(v) 
5 (1 - z)n. 

Y” I (I-- i)kn < %, 
yklogn < e-l”gnn < 1. 

After at most k logn iterations have been done, we are very nearly done. It is easy 
to see that at most k more iterations are needed to reach the integer lust satisfying 
Y * last = 0 This means that last < k(logn + 1). Hence, we have - 

X* kx* 1 last 

logn+l ‘last= -c last i=l x2* 

As previously discussed, by an averaging argument, one of these xi’s will cost at least 
as much as I-$&, which establishes our theorem. 0 
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3 Subgraph Isomorphism of Sorted Graphs and The 
Contact Map Overlap Problem 

We are given two undirected graphs Gr = (VI, El) and G2 = (V2, E2). Let ni = [vi 1 
and mi = ]Ei 1) for i = 1,2. The graphs are sorted i.e. a total order is defined on 
VI = {al,.. . , a,,} and V2 = {bl, . . . , b,,}, so that al < . . . < a,, and bl < . . . < bn,. 
Because of this total ordering, we may identify K with { 1,. . . , ni} for i = 1,2, and 
resort to oi and bi notation only when there is a possible confusion for a node i being in 
VI or Vs. It is customary to draw a sorted graph with the vertices arranged increasingly 
on a line. Although the graph is undirected, we distinguish a tail and a head for each 
edge {i, j}, where the tail is the left endpoint (i.e. min{i, j}) and the head is the right 
endpoint (i.e. max{i, j}). Therefore, we will denote an edge by an ordered pair (i, j) 
where i is the tail and j the head of the edge. 

A non-crossing map of VI in I4 is defined by two subsets of the same size k, 
{’ 21,-* . , ik} & VI and {ur , . . , , uk} 2 vz, where ir < iz . . . < ik and similarly for the 
uh’s. In this map, uh is the image of ih for 1 < h 5 k. Two edges (i, j) E El and 
(u, v) E 232 are shared by the map if there are I, t 5 k s.t. i = il, j = it, u = ul and 
2) = ut (see Figure 1). 

Each pair of shared edges contributes a sharing to the objective function. The 
maximum subgraph isomorphism for sorted graphs consists in finding the non-crossing 
map which maximizes the number of sharings. This problem is closely related to 
the maximum edge-induced common subgraph problem [ 11, 81, with the additional 
constraint that the isomorphism of the subgraphs must preserve the ordering of the 
nodes. 

Also, a similar problem is the RNA sequence structure alignment, to which Lenhof, 
Reinert and Vingron applied and IP approach in [18]. Note that non-crossing maps are 
in one-to-one correspondence with non-crossing matchings in the complete bipartite 
graph W having vertex sets VI and V2 and edge set VI x V2. The complete bipartite 
graph W will be extensively referred to in the arguments to follow. 

The problem is largely motivated by its application to computational biology 
named in the introduction, i.e. the m&mum contact map overlap problem. A contact 
map is a graph giving a concise representation of the 3D fold of a protein: for each 
residue there is a node, and there is an edge (called a contact) between two nodes if 
their euclidean distance is within a given threshold when the protein is folded. The 
value of an alignment of the residues of one protein vs the other, is the number of 
contacts in the first contact map whose endpoints are aligned with residues that also 
share a contact in the second contact map. Since an alignment must preserve the or- 
der of the residues, to find the best alignment one has to solve a Maximum Subgraph 
Isomorphism of Sorted Graphs. 
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Figure 1: A noncrossing map of value 5 

4 Integer Programming Formulation 

We denote by yef a binary variable for e E Er and f E E2, which is 1 iff the edges e 
and f are a sharing in a feasible solution. The objective function is then 

max c Yef 
eE&,fE& 

The sharings (er , fr) and (e 2, 2 can be both achieved by a noncrossing map if and f ) 
only if they are compatible, i.e. no two of the lines betweens the tails of ei and fi, 
the tails of e2 and f2, the heads of el and fi and the heads of e2 and f2 do intersect 
at a single point (or, as we will say, cross). Then the constraints for the problem are 
simply 

Yelfi + Yeafi I 1 Vei, e2 E El, fi, f2 E E2 : (ei, fi), (e2, f2) are not compatible. 
(6) 

Although it would be possible to list all pairs of incompatible sharings and solve 
the corresponding IP with this formulation, there are two reasons why we choose not 
to proceed this way. First, the LP bound is very weak (see the preceding discussion 
on the independent set problem) unless we strengthen it with cuts, which are not 
easy to deal with in the space of only y variables. Second, throwing in all the pairs 
of incompatible sharings may result in too many constraints, which will slow down 
unacceptably the solving algorithm. 

Therefore we decide to introduce a new set of binary variables xiU for i E VI and 
u E V2, which represent the actual map, and constraints such that the support graph 
of x must be a non-crossing matching. Instead of using the predicate PC we then 
bound the y variables by means of the x variables. That is, the edges (i, j) and (u, V) 
can be shared only if i is mapped to u and j to v : 
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Y(i,j)(u,v) I Xiu and Y(i,j)(u,v) I Xjv (7) 

We can immediately strengthen considerably these constraints as follows: For i E 
VI (and analogously for i E V2), denote by S+(i) the set {j E i + 1, , . . , n1 : (i, j) E El} 
of heads of edges of which i is the tail. Similarly, S-(i) = {j E 1, . . . , i - 1 : (j, i) E El} 
are the tails of edges with head in i. Then, in place of (7), we can write the following 
constraints: 

c Y(i,j)(u,v) I Xiu and C Y(j,i)(u,v) I xiv vi E KY (u, V> E E2 (8) 
j&+(i) jES-(i) 

and of course analogous constraints for i E V2 and (u, v) E El. We call these 
activation constraints. 

The noncrossing constraints are of the form: 

Xiu + Xjv 2 1 Vl<i<j<nr,l<v<u<nz:i#jVu#v. (9) 
Noncrossing and activation constraints are sufficient to model completely the prob- 

lem. Note that we can define a relation of compatibility for the x variables in a similar 
way as we did for the y. A matching in W can be seen as a set of lines connecting 
nodes of VI and V2 in the usual drawing of W in which VI is drawn on the top and 
V2 is drawn on the bottom. We denote such a line for i E VI and j E I4 by [i, j]. We 
say that two lines cross if their intersection is a point, and that they strictly cross if 
they cross at a point other than an endpoint. Two lines are compatible if they do not 
cross. A set of sharings is feasible if they are all mutually compatible, otherwise it 
is infeasible. Similarly we define a feasible and infeasible set of lines. If we draw the 
lines connecting the endpoints of an infeasible set of sharings, we have an infeasible 
set of lines. In the following section we will show that there is a very effective way 
of finding infeasible sets of lines in W. This sets will correspond to cuts in the IP 
which will in turn bound the infeasible sets of sharings. There is a well known notion 
in combinatorial optimization for finding a set of compatible elements, which is the 
stable set, or independent set problem. 

4.1 The max independent set problems 

We define two new graphs G, and G, as follows. In G, there is a node Ni, for each 
line [i, u] with i E VI and u E V2 and two nodes Ni, and Njv are connected by an 
edge iff [i, u] and [j, v] cross. Similarly, in G, there is a node Nef for each e E El and 
f E E2 and two nodes N,f and N etfr are connected by an edge iff the sharings (e, f) 
and (e’, f’) are not compatible. 
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Then a selection of x variables feasible for all noncrossing constraints corresponds 
to an independent set in G, and a feasible set of sharings is an independent set in 
G,. The maximum independent set in G, is the solution sought after. Hence, all 
cuts which are valid for the independent set problem can be applied to the x and y 
variables. The use of these cuts is vital in this problem. Without them, it is easy 
to build a trivial solution in which all fractional values are l/2 and which achieves 
the useless bound of min{mi, ms}. The most notable cuts for the independent set 
problem are the clique inequalities: An independent set and a clique can share at 
most one element. Therefore, we want to determine cliques in G, and G,. Another 
class of inequalities for the max independent set is the odd-holes. We will show that 
G, has no odd holes, while G, may contain them. 

In the remainder of the paper, we will describe a very fast method ((O(n2)) for 
separating over the exponentially large (0(22n)) set of all cliques in the x variables. 
Although we cannot characterize all cliques for the y variables, we identify several 
classes of cliques in G, and show that satisfying the clique inequalities for the x 
variables implies also satisfying the clique inequalities for the y variables for all but two 
classes of cliques. Furthermore, the cuts for x-cliques will be so strong that adding the 
two non-implied classes of cliques for the y variables yields only a tiny improvement in 
the bound, while incrasing the running time in a way that makes their use dispensable. 
We will elaborate on this in the section on computational results. For all these reasons, 
we will focus primarily on cliques in the x variables, i.e. sets of lines in the bipartite 
graph W which are all mutually crossing. Note that the usual matching constraints 
are just some such cliques (all lines share an endpoint) : 

C xiu 2 1 Vi E VI and C xiu 2 1 VU E V2 
UEv2 iwl 

Instead of separating on the O(n) matching constraints, we would like to have them 
in our basic formulation. However they are not maximal and can be strengthened. We 
will show that each maximal clique in W will correspond to a path which we call 
zigzag. Let 22 be the set of all zigzag paths and ZZ(lc) be the zigzag paths with k 
internal nodes. The matching constraints are then contained in the set of zigzag paths 
with only one internal node. 22(2) and 22(3) will also turn out to be useful, since it 
appears from our computational experiments that separating over 22(2) and 22(3) 
first and only after failure looking at all cliques in 22 results in a faster branch and 
bound algorihtm in practice. 

4.2 The final IP formulation 

Our final IP formulation for the max subgraph isomorphism of sorted graphs is as 
follows: 
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.z = max CeEE~,fc& Yef 

s.t. 

&6+(u) Y(id(w) 

CuE6- (v) Y(G)(w) 

&b+(i) Y(i,j)(w) 

&S-(j) Y(id(w) 

&Qz xl 

%e,f)EQw Yef 

C(e,f)& Yef 

Xij, Yef E (07 l) 

V&j) E &,u E I4 
V(i,j) E E1,v E b$ 
V(u,v) E I.324 E v, 
q-4 v> E J72,j E K 
VQz clique in G, 
for some Qy clique in G, 
VO, odd holes in G, 
Vi E Vl,j E V&e E El, f E I32 

The remainder of the paper is organized as follows: 

5 Cliques in the X variables 

In this section we study the problem of characterizing all cliques of G,, i.e. sets of 
lines in the bipartite graph W which are all mutually crossing. 

We define the following notion of a trianglein W. T(i,j]u) := {[i, u], [i+l, u], . . . , [j- 
W, [.Ol) h w ere i 5 j E VI and u E V2, and T(i]j, u) := {[i, j], [i, j + 11,. . . , [i, u - 
I], [i, u]} where i E VI and j 5 u E V2 Clearly a triangle corresponds to a clique, so 
that 

x(T(i, jJu)) 5 1 and x(T(i]j, u)) 2 1 

are valid inequalities for each i, j and u. These includes the standard matching 
constraints, which are just T(i]l, nz) and T(1, ni]u). 

Lemma 1 Given a fractional LP solution x*, we can compute the value of any t 
triangles in time 0 (n? + t) . 

Proof We start with a preprocessing in which we compute x*(T(i]l, v)) and x*(T(l, i]v)) 
for each i E VI and v E V2 in total time O(n2). This is done by first fixing i, letting 
x*(T(ip, 1)) = f x,i and noticing that x*(T(i]l, v)) = x*(T(i]l,v - 1)) + xi*, (and simi- 
larly we obtain all x*(T(l, ilv))). Now, g’ iven say any ii 5 iz E VI and u E V,, we get 
x*(T(ii, izlu)) = x*(T(l, i2]u)) - x*(T(l, ii - 112~)) in time O(1). 0 

We call the algorithm computing the O(n2) basic triangles of the proof SETUP. 
It will be the preliminary step to the fast separation algorithms for the classes of 
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inequalities described later. Note that there are only a polynomial number of triangles 
(O(n3)) overall so that their value can trivially be computed in polynomial time. 
However it would cost O(tn) to compute the value of any t triangles in a direct way, 
so that the lemma gives us an O(n) speed-up factor for t 2 n2, which is going to be 
the case (e.g. some inequalities will be defined -implicitely- over O(n3) triangles, and 
the separation could take time O(n4)). Going from n2 to n3 and n4 makes a huge 
practical difference in running times. We will show that all our separation algorithms 
have complexity O(n2), i.e. are very efficient. 

5.1 Polynomial Separation of all Maximal Cliques 

Call ~1, a,, , br, and b,, the set of terminal nodes. Consider a simple (i.e. without 
repeated nodes) path P which passes through all the terminal nodes, and alternates 
nodes of VI and V2 in a zig-zag fashion: That is, we can orient the path so that al 
if the first of the nodes of VI visited by the path, and if uk has been visited by the 
path, then all of the nodes in VI visited after al, are “to the right” (i.e. larger) of uk. 
Similarly, b,, is the first of the nodes of V2 visited by the path, and if bh has been 
visited by the path, then all of the nodes in V2 visited after bh are “to the left” (i.e. 
smaller) of bh. Note that any such path must start and end at a terminal node (see 
Figure 2, left), and must always include the lines [ai, b,,] and [an,, bi]. Since aI and 
b,, cannot have both degree two in such a path, there are only two possibilities after 
we orient the path as described before: Either the path starts at ai and b,, is the 
second node or it starts at b,, and aI is the second node. For each node of degree 
two in P a triangle is defined by considering the set of lines incident on the node and 
contained within the two lines of the path. For example, if . . . , uhl, bkl, uh2, bk2, . . . is 
part of such a path, then we consider, among others, the triangles T(uhl, uhp Ibk,) and 
T(uh21bk2,bkl). Let TA(P) be the set of triangles defined by P with tip in the nodes 
of VI having degree two in P. Similarly, let TB(P) be the set of triangles defined by 
P with tip in nodes of V2 of degree two in P. We define T(P) as the union of all the 
triangles defined by P, i.e. T(P) = TA(P) U TB(P). 

Theorem 2 A set Q of lines is a maximal clique in G, if and only if there exists a 
zigzag path P such that Q = T(P) . 

Proof (If) Let Q be a set of lines and P a zigzag path such that Q = T(P). Let 
[ui, bj] and [Q, bh] b e t wo lines in T(P). If [ai, bj] and [uk, bh] are in a same triangle 
of TA(P) or TB(P), then they cross. Otherwise, assume wlog ui < uk. Depending 
on the two lines being in a triangle of TA or T B, there are four possibilities, which 
can all be checked similarly. If [ai, bj] E TA(P) and [uk, bh] E TA(P), then the path 
contains ai, b,. . . , uk with bj 2 b and bh 5 b. Then bh 5 bj and so the lines cross. 
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b 
1 

Figure 2: Left: A zigzag path P (bold) and the set T(P). Right: Same path after flipping 
v2. 

After checking similarly the remaining cases for being in TA or TB, we conclude that 
T(P) is a clique. To show it is maximal, let [a, b] be any line not in T(P). Either 
a > al or a < un2. Assume the latter (a similar argument applies in the other case). 
Let c&, bh, at be three consecutive nodes of the path such that ak 5 a < at. It cannot 
be b = bh or else [a, b] E T(P). Now if b < bh the lines [a, b] and [at, bh] do not cross, 
while if b > bh the lines [a, b] and [@, bh] do not cross. Hence [a, b] cannot be added to 
T(P) to still obtain a clique. 

(Only if) Let Q be a maximal clique. Let a? < . . . < a$! be the nodes of VI in Q. 
Since Q is maximal, it includes the lines [al, bn2] and [a,, , b,], so up = al and a: = a,, . 
For each t, let bztt, and bzs be in V2 n Q such that [uf, bfft’,)] is the leftmost line out of 
c$ in Q and [uf , bztJ is the rightmost. For Q to be a clique it must be b$,+lj < bzt, 
(or else the lines [uf, b&l and [u$,+,), b$,+,) ] do not cross), and to be maximal, it must 

be in fact bz,+,) = b& (or else lines from a?+, or up to points between b$+,) and b$ 

could be added). Now the union of all lines (uf , b$) and (~12, b$) defines a zigzag 
path P, and Q c T(P) by construction. But T(P) is a clique, and Q is maximal. So 
Q = T(P). 0 

The inequalities x*(T(P)) 5 1 for all zigzag paths P are therefore the strongest 
clique cuts for this particular maximum independent set problem. We now show that 
they can be separated in time O(n2). In order to make the following argument easier, 
we first rename the nodes of V2 as {cl, . . . , cn2), so that the leftmost node cl is b,, 
and the rightmost, c,~, is bl (that is, we flip the nodes of V2 with respect to the 
usual drawing). Having done this, two lines were compatible (i.e. not crossing) in the 
original drawing of W if and only if now they are strictly crossing. Furthermore, a 
zigzag path P now looks as a path with goes from left to right both in VI and V2. 
We call such a path a leftright path. In Figure 2, right, we show the leftright path of 
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Figure 2, left, after flipping V2. A set Q was a clique in the original graph if and only 
if Q is now a set of triangles in which no two lines are striclty crossing. 

Since to define a leftright path we may pick any k internal (i.e. non terminal) nodes 
in one graph and k or k + 1 in the other, there are 0(22”) such paths. However, there 
is an algorithm for finding the leftright path P with largest x*(T(P)) which is not just 
polynomial, but of very low degree, making separation of this class of inequalities very 
effective in the practical solution of the problem. With respect to the new drawing of 
W, orient each line in the two possible ways and define the length for each arc thus 
obtained as follows. 

l(u, c) = x*(T(a)l, c)) - x*(T(l, ulc)) (10) 

and 
Z(c, a) = x*(T(l, u/c)) - x*(T(ull, c)). (11) 

The lengths of four special arcs are defined separately, as Z(ur , cl) = Z(cr , aI) = 0, 
GL,, cn2 > = x*(W&~,)) and ~(cn2,4 = ~*(T(LG&~,>>. 

Now, consider a leftright path P starting with either the arc (al, cl) or (cl, al) and 
ending with either the arc (a,, , h2) or (cn2, a,,). Call Z(P) the standard length of this 
path, i.e. the sum of arcs lengths. We then have the following lemma. 

Lemma 2 For a leftright path P, l(P) = x*(T(P)). 

Proof Suppose e.g. that P = (al, chI = cl, aj2) ch2, . . . , uj, = a,, , chl = cnp). A similar 
argument applies in the other three cases. From tedious but simple algebra, we have 
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Figure 3: V(-, ., \) white, and V(-, -, /‘) black 

@,,, c,,) and V(nl, n2,7> = @ns, a,,). The recurrence can be then solved backwards 
from (nr, n2), in time O(n2). At the end, V(l, 2, \) is the length of the longest leftright 
path starting with arc (cl, al) and V(2,1,7) is the length of the longest leftright path 
starting with arc (al, cl). The maximum of the two is the longest leftright path. o 

Corollary 2 There is an O(n2) algorithm for separating the class of all maximal clique 
inequalities. 

Proof From theorem 2, a clique inequality is violated if and only if there is a zigzag 
path P such that x*(5!‘(P)) > 1. Since a zigzag path corresponds to a leftright path 
via lemma 2, we can simply find the longest leftright path and check if it has length 
> 1. By lemma 1, we can compute in time O(n2) the lengths I for all the arcs of 
the complete bipartite oriented graph since each arcs requires the value of only two 
triangles. Together with theorem 3, this concludes the proof. 0 

6 Cliques in the Y variables 

Consider two edges both in the same graph, say Gr (the same conclusions and inequal- 
ities will apply to GQ as well). They can either have no endpoint in common and not 
intersect (cases Al and A2 in figure 4), or have one common endpoint (cases Bl, B2, 
B3) or no endpoint in common and intersect (case C). For an edge e and R one of 
Al, A2, A3, Bl, B2, C, call R(e) the set of edges which are in the relation R with e 
(actually, for a fixed edge e, each case leads to two relations, depending on which of the 
two edges in the drawing is e. To keep notation simple, we will omit this distinction). 
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Figure 4: Relationships between edges 

Then, in any feasible solution in which e is mapped into e’ and f is mapped into f’, 
f’ must be in the same relationship to e’ as f is to e. That is, if f E R(e) then the 
seat!{ e, f }} u {{e’, g} : g 4 R(e’)} is a clique in G,. Hence the following inequality is 

C Ye’g + Yef 5 1 ‘dR = Al, A2, A3, Bl; B2, C, e, f E J%, f E R(e) 
gW(e’) 

It can be easily proved that the clique inequalities relative to the cases Bl, B2, B3 
and C are implied by the activation constraints together with the matching constraints 
for the nodes, and hence cannot be used as cuts in our formulation. The remaining 
inequalities however are not implied. Consider for instance the case e = (2,3) E El, 
matched with e’ = (2,5) E Es. The edge f = (1,4) E El is in relation A2 with e. 
However, fi = (1,4) E EZ and f2 = (3,6) E E2, are not in the relation A2 with e’. 
The solution gee! = $/ffl = yff2 = l/2 and xii = x13 = 222 = x35 = x44 = x46 = l/2 
is feasible for all the activation and x-clique constraints, but violates the y-clique 
constraint. It is possible to describe a similar example for the case R=Al. Our 
computational experiments have shown that these clique inequalities in the y variable 
are actually very weak, and very seldom does their use give an improvement to the 
bound value. For instance, in the above example, adding the clique inequality does 
not change the objective function value (3/2) but simply the solution, which becomes 
Eli = x2i = xsj = x4j = l/4 for i = 1,2,3 and j = 4,5,6, and yefi = yefz = yeel = 
Yff~ = Yff2 = Yfe’ = l/4. This solution is now feasible for all cliques in both x and y 
variables. 

7 On the Strength of the Relaxation 

The odd-holes inequalities for the independent set problem say that for any odd-hole 
C there can be at most [/Cl/Z] no d es in an independent set. The fact that we can find 
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(weighted) cliques in G, in polynomial time hinted us to proving that G, is in fact 
perfect. In this case, G, has no odd holes. A graph G is weakly triangulated if neither 
G nor Gc have (induced) chordless cycles of length greater than four Note that in G, 
there may be holes of size 4 (G, is not chordal); e.g. [ai, bs], [as, bd], [aa, bi] and [ad, bz] 
define a chordless cycle. A result by Hayward ([14]) states that weakly triangulated 
graphs are perfect. We show that G, is perfect by proving the following theorem. 

Theorem 4 The graph G, is weakly triangulated. 

Proof We have to prove that there are no chordless cycles of length > 5 in (i) G, 
and (ii) Gz. 

(i) Consider a cordless cycle of length lc 2 5 in G,. It corresponds to a set Ii, . . . , 21, 
of lines in W, such that Zi crosses Zi-i and Zi+i only. Since Zi does not cross /a, wlog 
assume Z3 lies completely to the right of 11. We distinguish two cases. If Ic 2 6, for 
i=4,... , k - 1, since Zi crosses Zi-i but does not cross 11, also Zi lies completely to the 
right of 11. Use the same argument starting from Zk-i and knowing that Ii is completely 
to its left. Then for i = 2,. . . , Zk-s we deduce that the line Zi is completely to the left 
of Zk-i. Hence the nonempty set L = {Zs, . . . , . . . , Zk-s} lies completely within the lines 
Ii and Zk-i. But Zk crosses both Zi and Zk-i and so it must cross all the lines in L. So 
11, cannot have degree 2 in the cycle. If k = 5 we reason as follows. Ii does not cross 
la, Zs does not cross 25 but Zs crosses Ii. So Zs is to the right of both Ii and Z5: written 
3 E R(1,5). Then, since Zs does not cross Zs nor Z3 but 12 crosses /a, Zs is to the left 
of both Z2 and /a, i.e. 5 E L(2,3). Continuing we get 2 E R(4,5), 4 E L(1,2) and 
1 E R(3,4). A contradiction, since we started with Zs to the right of Ii and ended with 
Ii to the r&h of Zs. 

(ii) We now show that G, has no antiholes of size 5 or more. First make precise 
how G, is created. We start by embedding the contact maps of each of the two proteins 
into the plane as follows. The vertices of the first protein VI are placed on a horizontal 
line according to their order, with the first amino acid in the protein being the left- 
most vertex. The contacts between vertices are then drawn in as curved edges, but 
do not affect G,. The vertices of the second protein Vz are placed on a horizontal line 
below this first line and also according to their order in the protein. 

The vertices of G, correspond exactly to the edges in the embedded complete 
bipartite graph Knl r7LZ. Two vertices in G, are adjacent whenever their corresponding 
edges cross. We wish to eliminate the case where the edges intersect at a point (i.e. 
do not strictly cross) to make our analysis easier. 

We do this by constructing a graph isomorphic to G, from a non-complete bipartite 
graph G, ,nz with more vertices than Knl,nz as follows. Make a group of nodes for each 
vertex in VI that consists of n2 copies of that vertex in VI, and likewise form a group 
of nl copies of a vertex for each vertex in VZ. We do not overlap any of these vertex 
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groups and maintain the order of these vertex groups on the line. Then an edge ij 
in &1,n2 which is the List edge from the left incident to i and is the k2nd edge from 
the right incident to j is assigned the new endpoints of the kist rightmost copy of i 
and the ksnd leftmost copy of j. Then the graph isomorphic to G, is obtained by 
considering the crossing edges of G,, ,n2 analogously as in our first construction of G,. 

After having constructed G, from the bipartite graph Gn,,nz, as discussed before, 
let an antihole of size 5 or more be given. Denote the vertex in this antihole whose 
corresponding edge has the leftmost endpoint in VI by 1. Denote its neighboring 
vertices by 1 - 2,Z - 1,Z + 1,Z + 2 consistently with the order that these 5 vertices 
appear in this antihole. The vertices 1,Z + 1, etc. correspond to edges in Gnl,nz, whose 
endpoints in VI and Vz are denoted by Ii, 12, (I+ l)i, (1 + 1)2, etc. 

Since the edges for 1 and 1 + 2 must intersect, and the edge for 1 + 1 must not 
intersect either of these, the left-to-right order in VI for Ii, (1 + l)i, (1 + 2)i must 
be 11, (1 + 2)i, (1 + 1)i. Also, the left-to-right order of the endpoints in Vz must be 
(1 + 2)2,12, (I+ 1)2. The edge for Z- 1 must intersect the edges for I+ 1 and I+ 2, but 
not the edge for 1. Hence, the new left-to-right orders are 11, (1 - l)i, (1 + 2)i, (I+ l)i 
and (1+2)2,12, (Z+l)s, (Z-1)2. The edge for Z-2 is required to intersect the edges for 1 
and I+ 1. As a result, this edge will also intersect the edge for 1 - 1, which contradicts 
the definition of an antihole. 0 

Since G, is perfect, it is no surprise we could find weighted cliques in polynomial 
time. In fact, there are algorithms for finding a max weighted clique in a weakly 
triangulated graph of time O(jVl”), due to Hayward, Hoang, Maffray [15] and Raghu- 
nathan [21]. Our O(n2) result for this specific graph makes a huge difference in the 
practical solution of the problem. Finally, we note that since G, is perfect, the clique 
inequalities and non-negativity provide a complete polyhedral description for the non- 
crossing bipartite matching polytope that the 2 variables are constrained to be in. 

The situation is different as far as the graph G, is concerned. In fact, G, can con- 
tain odd holes. Take for instance Ei = {ei, . . . , e5) = {(L% (2,5), (3,7), (1,4), (6,7)) 
and E2 = {fi,... , fs} = {(1,7), (2,5), (3, S), (2,4), (5,6)}. Consider the sharings 
si = (ei,fi) for i = 1,. . . ,5. Then it can be checked that (si,s2,sa,s~,ss,s1) is a 
chordless cycle in G,, i.e. each sharing is not compatible with the two adjacent ones 
but is compatible with anyone else. There is a known polynomial time algorithm for 
separating odd-holes (11191)) which we used in our code. 

8 Computational results 

We have implemented our branch and cut in C, and run it on a Pentium PC, with Linux 
RedHat 6.0, using the branch-and-cut framework ABACUS 2.3. Feasible solutions 
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Figure 5: Alignment of the 4A contact maps of proteins lbpi and lknt. 

were obtained by two greedy local search algorithms (which we do not have space 
to describe here), run for many iterations. The real data was obtained from the 
Protein Data Bank (PDB, [4]). The contact maps were computed by using the software 
tortilla which is being developed at Sandia National Labs. Here we report only 
some preliminary results, which are already very promising. A more complete version 
of this paper will follow in which we compare all proteins of less than 100 residues 
versus each other. These comparisons will be used to cluster the proteins in families of 
similar structure. In Table 1 we report the optimal alignment for ten pairs of proteins 
from PDB. The contact maps are relative to a 4 A threshold. Columns NR and NC 
report the (joint) number of residues and contacts respectively. For each instance we 
report the size of the starting LP (rows x columns), the number of cuts generated and 
an estimate of the -implicit- number of cuts considered, the total number of LPs and 
the running times in seconds, for the whole algorithm and its LP solver part (Iwhich is 
more than 90% of the total). All these problems were solved to optimality in less than 
15 minutes. This is the first time that provably optimal solutions are found for contact 
map alignment of real proteins. Finally, a nice feature of branch and cut is that, for 
instances too large to be solved exactly, the procedure can return approximate feasible 
solutions and a bound on the maximum error. We expect solutions provably close to 
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proteins due NR NC start size cuts cut space tot LPs time 
5pti-lbpi 49 116 126 8650 x 7233 72 781 x 1030 4 320 (293) 
5pti-2knt 
5pti-lknt 
lbpi-2knt 
lbpi-lknt 
2knt-lknt 
3ebx-6ebx 
3ebx-lera 
Gebx-lera 
lvii-lcph 

36 116 118 
34 113 116 
32 116 98 
31 113 96 
43 113 88 
46 124 122 
37 124 108 
39 124 114 
5 57 28 

7888 x 6649 554 781 x 1030 14 
7585 x 6329 682 95 x 1030 22 
5988 x 5749 440 781 x 1030 12 
5757 x 5469 300 95 x 1030 7 
5215 x 5125 9: 1;: :z 1 
7490 x 7556 :: 4 
5924 x 6744 282 193 x 1O33 7 
6474 x 7044 230 193 x 1O33 5 
512 x 903 437 238 x 1012 103 

760 (743j 
934 (918) 
423 (410) 
331 (319) 
52 (36) 

388 (358) 
487 (463) 
467 (445) 

12 (11) 

Table 1: Optimal alignments for some PDB proteins. 

optimum to be already effective in classifying proteins according to their 3D structure. 
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